
PIP-0105
Options in write_term

PIP working group

Subject and motivation

ISO-standard defines

write_term(@stream_or_alias, @term, @write_options_list)

with the 4 options:

● quoted(Bool)
● ignore_ops(Bool)
● numbervars(Bool)
● variable_names(List)

Many Prolog systems implement additional options.

Draft PIP-0105 reviews these and makes recommendations.

https://prolog-lang.org/ImplementersForum/0105-write-options.html

https://prolog-lang.org/ImplementersForum/0105-write-options.html

Proposed general improvements

Unimplemented Options
ISO requires error, but ignoring or warning is more convenient. Introduce a Prolog flag unknown_option with

values error|warning|ignore. The flag may be module-specific.

Convenience
Allow option_name as abbreviation for option_name(true), e.g.

write_term(Term, [quoted,ignore_ops])

Flexibility
Allow defaults to be inherited from context settings. These may be global, module-specific or stream-specific.

Compatibility
If numbervars(true) is in effect, and the argument of '$VAR'(N) is an atom representing a valid variable name,

output this name unquoted. Provides backward compatibility with pre-ISO implementations and removes the need

for workarounds such as provided in SICStus or GProlog.

New options - term layout

max_depth(N) (SP,SWI,ECL,GP,Ciao,XSB)
If N is a positive integer, print the term only up to a maximum nesting depth of N, and represent more deeply nested
subterms as If 0, impose no depth limit.

portrayed(Bool) (SP,ECL,IF,GP,Ciao,SWI)
If true, call the user-defined predicate portray/1,2 in the way print/1,2 does.

spacing(Atom) (PIP based on SWI)
Where to print spaces, with the alternatives

● compact: when needed for correct parsing (with some implementation-specific allowance for redundancy)
● next_argument: also after the comma separating structure or list arguments
● generous: also after prefix, around infix and before postfix operators

cycles(Bool) (PIP based on SP,SWI)
Use a (so far implementation-defined) finite notation to print cyclic terms.

New options - terminating printed terms

fullstop(Bool) (ECL,SWI)
Terminate the term with a fullstop (a dot followed by blank space), so it can be read back. If necessary, an extra
space will be inserted before the fullstop, in order to separate it from the end of the term.

nl(Bool) (ECL,SWI)
Print a newline sequence (as with nl/1) after the term. If this is used together with the fullstop(true) option, this
newline serves as the blank space after the fullstop.

?- write_term(+++, [fullstop,nl]), write_term(atom, [fullstop,nl]).
+++ .
atom.

New options - printing partial terms

priority(Prec) (SP,SWI,GP,Ciao,ECL,XSB)
Prec is an integer between 0 and 1200 (default 1200), representing context operator precedence. The written term
will be enclosed in parentheses if its precedence is higher than Prec.

partial(+Bool) (SWI)
If true, insert a single space ahead of the printed term, if this is necessary to ensure token separation from previously
printed text.

RATIONALE: Needed to correctly print subterms in the context of larger terms, for example when implementing
pretty-printers.

New options - functor-specific syntax

portable(Bool) (PIP)
Ignore operator declarations and output the corresponding compound terms in functional notation. This is like ISO
ignore_ops, except that it retains list notation ([...], also for improper lists), brace-terms ({...}) and infix commas.

write_term(..., []) [a+b*c,{d},(e,f)]
write_term(..., [portable]) [+(a,*(b,c)),{d},(e,f)]
write_term(..., [ignore_ops]) .(+(a,*(b,c)),.({}(d),.(,(e,f),[])))

RATIONALE: Useful when exchanging text between different Prolog contexts, such as modules with different local operator
declarations, or different Prolog systems. It leads to a more compact and readable representation than ignore_ops(true) and is
therefore often preferable.

This single option was devised as a compromise to avoid the inclusion of a multitude of more specific options that exist in systems
(such as dotlists, operators, brace_terms, …).

New options - subterm type specific

float_precision(+Precision) (XSB)
Number of significant digits used in printing floats. 0 means “enough digits to read back accurately”.

integer_base(+Int) (PIP based on XSB)
Specify the base (radix) for printing integers. Range 2..36, default 10.

text_max(+Length) (PIP based on XSB)
Truncate text (atoms and strings) after Length characters. Don't truncate if 0 (default). Whether and how the
abbreviation is indicated is left implementation-defined. This applies to both quoted and unquoted output.

atom_quoting(+When) (PIP based on SWI)
Specify how atoms are quoted if quoted(true). When is one of

● when_needed: when necessary for correct parsing (default)
● when_non_ascii: in addition, quote atoms that contain non-ASCII characters
● always: quote all atoms, regardless of the characters they contain (useful for non-Prolog readers)

…

Summary

● This is a somewhat open-ended subject
● PIP lists a number of further reasonable options, and recommends some for deprecation
● Before adding new options in your system, please consult the PIP beforehand!

