
Democratising Access to Logic Programming:
A Web Application Design Tool for Querying Prolog
Code
Santiago Andrés Villarroel1, Christian Nelson Gimenez1, Jorge Pablo Rodríguez1 and
Laura Andrea Cecchi1

1Grupo de Investigación en Lenguajes e Inteligencia Artificial (G.I.L.I.A.)
Facultad de Informática, Universidad Nacional del Comahue
Neuquén, Argentina

Abstract
Logic Programming (LP) is a powerful paradigm for gaining fundamental knowledge and skills in
Computer Science. LP facilitates the development of Computational Thinking skills, which are relevant
for problem-solving, and also strengthens Logical Thinking abilities. To teach LP effectively, specialised
educational resources are necessary. While students develop their programs in Prolog, they often struggle
to showcase their running applications to classmates, friends, and family.

Providing educational resources that support the creation of Web applications with Prolog querying
functionality will motivate students to learn.

This work presents Prolog Web App Creator, an integrated development environment for students
to design and create Web applications. Ease of use, collaboration, and publication of the result are also
relevant aspects of the environment, allowing the students to share the design and the product with their
social circles.

The proposed solution implements an educational resource to consolidate LP teaching while fo-
menting collaboration, democratisation, and strengthening current initiatives. Prolog Web App Creator
empowers creative individuals to develop solutions using LP and encourages their shift from the role of
technology consumers to that of technology creators.

Keywords
Logic Programming Education, Prolog, Web technology, Web application

1. Introduction and Motivation

Recently, there has been a great interest in the early incorporation of Computer Science (CS)
into mandatory education. The worldwide scientific community recognises learning CS to
be an effective means to develop Computational Thinking (CT) and Logical Thinking (LT) in
children [1, 2, 3, 4, 5].

In this direction, Logic Programming (LP) is a useful paradigm for acquiring fundamental
knowledge and skills in CS. Furthermore, LP facilitates the exploration and development of CT
skills, including abstraction, decomposition, pattern recognition, and generalisation, which are
crucial for problem-solving. Additionally, LP fosters LT abilities, aiding in the differentiation

PEG 2024: 2𝑛𝑑 Workshop on Prolog Education, October, 2024, Dallas, USA.
© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


of valid arguments from fallacies and contradictions, and in forming connections between
arguments via reasoning, among other skills [6, 7, 8, 9, 10, 11].

To facilitate the effective teaching of LP, appropriate educational resources are necessary. In
this regard, it is essential to not only visually make programs in Prolog, which avoids the need
to teach and handle the textual syntax of this language, but also to query these programs in a
user-friendly manner. However, this alone is not sufficient.

Students develop their programs in Prolog; nevertheless, they frequently lack the means
to effectively show their running applications to their classmates, friends, and family. A
step forward would be to allow any person to access and query the program. Providing
educational resources that enable the creation of Web applications with Prolog program querying
functionality would motivate students to learn.

Computational devices like smartphones and personal computers have become integral
to our daily lives. They are not merely tools for communication; they are now extensively
utilised across various domains, including navigation, personal identification, gaming, and
social networking. Their powerful computing capabilities, compact size, internet connectivity,
affordability, and wide range of user-friendly apps make them highly usable.

Children and young people are keen technology consumers, especially when it comes to
mobile technologies. The education sector is increasingly integrating these technologies, em-
phasising the importance of understanding their mechanisms to foster the development of
technology creators. In this regard, it is crucial to make continuous efforts to develop new
technological environments that enable the consolidation of LP in primary and secondary
schools, increasing and strengthening existing initiatives.

In this context, our proposed solution consists of a Web-based educational resource that
allows the creation of a user-customised Web application to query an already-built Prolog
program. Prolog Web App Creator is the name of this tool and it is designed for novice users and
non-programmers.

In the design and implementation of this resource, priority is given to ensuring that the user
interface is highly intuitive so that its use does not require prior knowledge.

By using this tool, we aim to reach a wider range of students in LP education, providing
an intuitive design environment that allows any user, especially children, to build situated
Web applications. In this way, the goal is to democratise software development, empowering
everyone, particularly school-aged children and youth, and facilitating their transition from the
role of technology consumers to that of technology creators.

2. Related Works

In this section, we outline the tools and software that are relevant to the proposed work.
MIT App Inventor is a visual and intuitive programming environment that facilitates the

development of mobile applications for everyone. The user interface consists of a Designer to
select the components of the designed application and their properties, and a Blocks Editor to
define the behaviour of the application [12].

The original design of Scratch was motivated by the needs and interests of young people.
Scratch is a visual programming environment that allows users to learn programming by creating



personally meaningful projects (i.e. motivated by the needs and interests of young people), such
as games or stories [13].

Its main objective is to facilitate and promote self-directed learning through exploration,
collaboration, and sharing with peers.

Snap! (formerly known as BYOB) is a visual, drag-and-drop programming language based on
blocks [14]. It is an extended implementation of Scratch that allows managing more complex
data structures and has a more youthful design. This extended functionality makes the tool
suitable for a more in-depth introduction to computer science for secondary and university-level
students.

Ciao Playground [15] is a platform that allows access to a Prolog engine embedded in the Web
browser, without any need for prior software installation. Additionally, existing Prolog tutorials
can be adapted for the Playground, or new ones can be created, to achieve a higher level of
interactivity by allowing the user to test and manipulate code on the Web. Similarly, other
Prolog implementations also have Web tools that allow interaction with a Prolog engine, such as
SWI-Prolog with the SWISH 1 platform and Tau Prolog Sandbox2. However, unlike our proposal,
these tools do not generate an application nor include an educational visual component.

Blockly Prolog3 is a Web-based visual educational resource that facilitates the creation of
a Prolog program using blocks. The tool allows inserting blocks corresponding to concepts
such as facts, constants, and variables, into a Canvas to construct a Prolog program. This
functionality achieves a higher level of accessibility by not requiring the handling of Prolog
textual syntax. Although this tool has a strong visual component, it is not focused on creating
an application that interacts with a given Prolog program, nor can it be shared with an audience
unfamiliar with LP.

MIT App Inventor, Scratch, and Snap! are powerful tools that enable non-programmers to
build and share their applications, which is the core functionality that Prolog Web App Creator
aims to achieve. These platforms, however, are rooted in the Imperative Programming Paradigm,
which differs from the LP approach that the proposed tool adopts. While the paradigms vary, the
overarching objective remains the same, that is, to further democratise access to programming,
expanding the reach of this discipline to a broader audience.

In contrast, tools like Blockly Prolog, SWISH, Tau Prolog Sandbox and Ciao Playground also
contribute to the goal of increasing the accessibility of the knowledge area of programming,
especially LP. However, their focus differs from that of the previously mentioned tools, as
they do not aim to design, build, and share executable Web applications. Instead, these tools
emphasise providing interactive environments for learning and exploring LP concepts.

3. How Prolog Web App Creator works

Prolog Web App Creator is an integrated development environment (IDE) designed for beginners
and non-programmers to create Web applications with features like querying Prolog programs.
These Web applications, which we will refer to as the Resulting Artefact, can be used and shared

1https://swish.swi-prolog.org/ visited on August 17, 2024
2http://tau-prolog.org/sandbox/ visited on August 17, 2024
3http://www.programmierkurs-java.de/blocklyprolog/editor/index.html visited on August 17, 2024

https://swish.swi-prolog.org/
http://tau-prolog.org/sandbox/
http://www.programmierkurs-java.de/blocklyprolog/editor/index.html


Figure 1: Resulting Artefact life cycle.

by anyone in the students’ social circles, such as family and friends.
Children and teenagers can develop software using their own Prolog code or by remixing

code from their peers, thus embracing the role of creators rather than merely being technology
consumers.

Figure 1 illustrates the Resulting Artefact life cycle, which begins with a Prolog program.
The program, created by the student or another person, is used as input for the IDE. The
students create their desired interface, populating the design with text, images, and dynamically
generated elements based on the input program. The design can also be shared with their
classmates to create different versions of the resulting application.

When the design is finished, the application is saved, and a Resulting Artefact that becomes
accessible from the Internet is generated, allowing students to share it with other people.

Figure 2 illustrates the typical flow, along with the Prolog Web App Creator interface structure.
The interface consists of two views: the design view and the resulting artefact view. The design
view allows the student to create the application by providing a Prolog program as input (1) and
inserting buttons (2) and images on a canvas (3). In this view, students produce their artefact
and test the logic program before generating the final application. The resulting artefact view
(4) shows the designed interface and executes the code by pressing the buttons placed by the
student.

Figure 3 illustrates a project in the design view, where the input Prolog program is displayed
in the right panel, representing a knowledge base about people and their respective hobbies.
To create a Web application, first, the code is uploaded to the interface (see code panel on the
right side in Figure 3). This action creates buttons automatically: one for each predicate in the
uploaded logic program (see Predicados in Figure 3). To facilitate the design and configuration of
the queries to the Prolog program, each button corresponding to a predicate not only includes
its name but also indicates its arity. Note that a small square appears for each argument in the
predicate. For example, the relation persona is unary and the relation hobby is binary. These
buttons are associated with pre-defined elements called Widgets.



Figure 2: Prolog Web App Creator interface structure

Figure 3: Prolog Web App Creator interface in the editing view.

Then, the student can press these buttons associated with various types of Widgets, such
as images, text, or queries. This action will result in these elements being inserted into the
canvas, creating their personalised application. The Toolbox (see Figure 2; left panel in Figure 3)
contains Query Widgets, which were generated based on the predicates present in the input



program. On the Canvas, a Title, two Images, and two Query Widgets have been inserted. The
Query Widgets consist of a title, an optional tag, parameter type selectors, and the parameters
themselves. Interacting with these Widgets by pressing the Consultar (Query) button will
display the results in the lower right panel. Once the student is satisfied with their design, they
generate the Resulting Artefact (see Exportar button in Figure 3).

The tool structure consists of three main components: Client, Prolog Engine, and Server. The
Client component will handle all the aspects related to the GUI (Graphical User Interface), and
the interaction with the Prolog Engine. In particular, the Client holds the primary responsibility
for managing the views explained before, and the design and editing process of the Resulting
Artefact. In addition, it is equipped to communicate user-generated queries via Widgets to the
Prolog engine, ensuring seamless interaction and retrieval of the results. The Server, on the
other hand, handles the persistent storage of user-generated projects. It is designed to save these
projects consistently and can retrieve them upon request from the Client. It is important to
note that the Client component is equipped with a Prolog Engine, specifically the WebAssembly
implementation of the Ciao Prolog engine [15]. This means that the Client does not rely on a
network connection to the engine, thus achieving a higher level of availability.

4. Prolog Web App Creator in Primary and Secondary School

We aim to make LP accessible to students without a deep disciplinary background. Thus, we seek
to broaden the representation of CS in primary and secondary education. There is a significant
disparity and a lack of a clear definition of how CS is integrated into the curriculum at different
educational levels. Furthermore, CS is entirely absent from the curriculum at several of these
educational levels [3, 16].

The purpose of this work is to democratise access to computing and LP in primary and
secondary education, rather than limiting it to higher education. LP is not a common topic in
schools despite its relevance. Usually, teachers do not have the necessary training to teach LP
without the aid of a specialised tool. Therefore, textual codification should not be a starting
requirement. Thus, Prolog Web App Creator opens up paths to a first contact with LP not
focused on textual programming.

This is particularly relevant for teachers who need to develop content knowledge and peda-
gogical content knowledge for effectively teaching LP. Teachers dealing with teaching LP need
tools and strategies specifically designed for this purpose.

A constructionist approach, where individuals focus on building tangible and public artefacts,
is particularly effective in giving learners a sense of purpose when engaging with LP. This
approach encourages students to create meaningful projects, making abstract concepts in LP
more concrete and applicable. From a constructionist perspective, there is a strong emphasis
on interaction, where the student consciously participates in the construction of a public
entity [17, 18]. Within the scope of this work, a public entity refers to the Resulting Artefact,
which is a computational artefact that performs queries on a Prolog-based knowledge base.

We identify two primary ways in which students can interact with this paradigm using the
tool. The first option entails working with a Prolog program that is not of our authorship. In
this scenario, the student learns to read and interpret an existing knowledge base to build an



Design View

Resulting Artefact

Figure 4: Designing a Web app for environmental problems.

application. The student can then deepen their understanding by modifying and extending
the existing program, allowing them to apply their knowledge of LP and Prolog concepts in a
hands-on manner [19].

The second option involves the student building an application based on their own Prolog
program. This approach provides the learner with a meaningful resource that can be interacted
with by others, reinforcing the practical application of LP principles.

Under this scenario, teachers and students select a problem on the curriculum, conduct
research, and define its scope. For example, environmental problems. In this direction, they could
identify environmental issues and determine pollutants and their effects on the environment
and health. Teachers and students could collaboratively work to create a text on the topic (an
example in Spanish is available at this link). They start by defining and coding facts about this
topic and then create rules that describe relationships between facts and a possible solution.
Students in primary school could make the program in Blockly Prolog (see block-based logic
program) and students in secondary school could do it in textual Prolog (see textual logic
program). Once students have created their logic program, they upload the code into Prolog
Web App Creator, design the Web app, and export the Resulting Artefact (see Figure 4).

https://drive.google.com/file/d/1MfE30yw7c0UbvJQy7x2PyhMKzOVvu2vh/view?usp=sharing
https://drive.google.com/file/d/1C9tw4o60geYDDad5jpshO2QTFvs8IZlJ/view?usp=sharing
https://drive.google.com/file/d/1C9tw4o60geYDDad5jpshO2QTFvs8IZlJ/view?usp=sharing
https://ciao-lang.org/playground/?code=%25%25%25%25%25%25%25%25%0A%25%20%20Texto%0A%25%20En%20el%20%C3%A1mbito%20de%20la%20contaminaci%C3%B3n%20ambiental%2C%20existen%20diversos%20factores%20que%20afectan%20tanto%0A%25%20al%20agua%20como%20al%20aire.%20Los%20pesticidas%20son%20un%20ejemplo%20claro%2C%20ya%20que%20contaminan%20tanto%20%0A%25%20el%20agua%20como%20el%20aire.%20Adem%C3%A1s%2C%20el%20pl%C3%A1stico%20y%20los%20desechos%20industriales%20tambi%C3%A9n%20son%0A%25%20responsables%20de%20la%20contaminaci%C3%B3n%20del%20agua.%20Por%20otro%20lado%2C%20las%20emisiones%20de%20CO2%2C%20el%20%0A%25%20smog%20y%20la%20lluvia%20%C3%A1cida%20son%20contaminantes%20del%20aire.%0A%25%0A%25%20La%20contaminaci%C3%B3n%20tiene%20varios%20efectos%20adversos.%20Los%20pesticidas%20pueden%20causar%20%0A%25%20enfermedades%20respiratorias%20y%20afectar%20los%20ecosistemas%20acu%C3%A1ticos.%20El%20pl%C3%A1stico%20tambi%C3%A9n%0A%25%20impacta%20negativamente%20en%20los%20ecosistemas%20acu%C3%A1ticos.%20Los%20desechos%20industriales%20no%20solo%0A%25%20da%C3%B1an%20los%20ecosistemas%20acu%C3%A1ticos%2C%20sino%20que%20tambi%C3%A9n%20provocan%20enfermedades%20respiratorias.%20%0A%25%20Las%20emisiones%20de%20CO2%20contribuyen%20al%20calentamiento%20global%2C%20mientras%20que%20el%20smog%20y%20la%20%0A%25%20lluvia%20%C3%A1cida%20causan%20enfermedades%20respiratorias.%20Adem%C3%A1s%2C%20la%20lluvia%20%C3%A1cida%20afecta%20la%20%0A%25%20vegetaci%C3%B3n%20y%20puede%20provocar%20enfermedades%20de%20la%20piel.%0A%25%0A%25%20Para%20mitigar%20estos%20problemas%2C%20existen%20varias%20soluciones%20posibles.%20El%20tratamiento%20del%0A%25%20agua%20es%20esencial%20para%20combatir%20la%20contaminaci%C3%B3n%20por%20pesticidas%20y%20desechos%20industriales.%0A%25%20El%20reciclaje%20es%20una%20soluci%C3%B3n%20efectiva%20para%20la%20contaminaci%C3%B3n%20por%20pl%C3%A1stico.%20La%20regulaci%C3%B3n%0A%25%20industrial%20es%20necesaria%20para%20controlar%20los%20desechos%20industriales.%20Las%20energ%C3%ADas%20%0A%25%20renovables%20pueden%20reducir%20las%20emisiones%20de%20CO2.%20El%20uso%20de%20bicicletas%20ayuda%20a%20disminuir%0A%25%20el%20smog%2C%20y%20la%20regulaci%C3%B3n%20de%20emisiones%20es%20crucial%20para%20combatir%20la%20lluvia%20%C3%A1cida.%0A%0A%0A%25%20Hechos%20sobre%20contaminaci%C3%B3n%20del%20agua%20y%20del%20aire%0A%0Acontamina(pesticidas%2C%20agua).%0Acontamina(pesticidas%2C%20aire).%0Acontamina(plastico%2C%20agua).%0Acontamina(desechos_industriales%2C%20agua).%0Acontamina(emisiones_co2%2Caire).%0Acontamina(smog%2Caire).%0Acontamina(lluvia_acida%2C%20aire).%0A%0A%25%20Hechos%20sobre%20los%20efectos%20de%20la%20contaminaci%C3%B3n%0Aefecto(pesticidas%2C%20enfermedades_respiratorias).%0Aefecto(pesticidas%2C%20ecosistemas_acuaticos).%0Aefecto(plastico%2C%20ecosistemas_acuaticos).%0Aefecto(desechos_industriales%2C%20ecosistemas_acuaticos).%0Aefecto(desechos_industriales%2C%20enfermedades_respiratorias).%0Aefecto(emisiones_co2%2C%20calentamiento_global).%0Aefecto(smog%2C%20enfermedades_respiratorias).%0Aefecto(lluvia_acida%2C%20vegetacion).%0Aefecto(lluvia_acida%2C%20enfermedades_respiratorias).%0Aefecto(lluvia_acida%2C%20enfermedades_piel).%0A%0A%25Reglas%20sobre%20soluciones%20posibles.%0Asolucion(tratamiento_agua)%3A-%20contamina(pesticidas%2C%20agua).%0Asolucion(tratamiento_agua)%3A-%20contamina(desechos_industriales%2C%20agua).%0Asolucion(reciclaje)%3A-contamina(plastico%2C%20agua).%0Asolucion(regulacion_industrial)%3A-contamina(desechos_industriales%2C%20agua).%0Asolucion(energias_renovables)%3A-contamina(emisiones_co2%2Caire).%0Asolucion(uso_bicicletas)%3A-contamina(smog%2Caire).%0Asolucion(regulacion_emisiones)%3A-contamina(lluvia_acida%2C%20aire).%0A%0A%0A
https://ciao-lang.org/playground/?code=%25%25%25%25%25%25%25%25%0A%25%20%20Texto%0A%25%20En%20el%20%C3%A1mbito%20de%20la%20contaminaci%C3%B3n%20ambiental%2C%20existen%20diversos%20factores%20que%20afectan%20tanto%0A%25%20al%20agua%20como%20al%20aire.%20Los%20pesticidas%20son%20un%20ejemplo%20claro%2C%20ya%20que%20contaminan%20tanto%20%0A%25%20el%20agua%20como%20el%20aire.%20Adem%C3%A1s%2C%20el%20pl%C3%A1stico%20y%20los%20desechos%20industriales%20tambi%C3%A9n%20son%0A%25%20responsables%20de%20la%20contaminaci%C3%B3n%20del%20agua.%20Por%20otro%20lado%2C%20las%20emisiones%20de%20CO2%2C%20el%20%0A%25%20smog%20y%20la%20lluvia%20%C3%A1cida%20son%20contaminantes%20del%20aire.%0A%25%0A%25%20La%20contaminaci%C3%B3n%20tiene%20varios%20efectos%20adversos.%20Los%20pesticidas%20pueden%20causar%20%0A%25%20enfermedades%20respiratorias%20y%20afectar%20los%20ecosistemas%20acu%C3%A1ticos.%20El%20pl%C3%A1stico%20tambi%C3%A9n%0A%25%20impacta%20negativamente%20en%20los%20ecosistemas%20acu%C3%A1ticos.%20Los%20desechos%20industriales%20no%20solo%0A%25%20da%C3%B1an%20los%20ecosistemas%20acu%C3%A1ticos%2C%20sino%20que%20tambi%C3%A9n%20provocan%20enfermedades%20respiratorias.%20%0A%25%20Las%20emisiones%20de%20CO2%20contribuyen%20al%20calentamiento%20global%2C%20mientras%20que%20el%20smog%20y%20la%20%0A%25%20lluvia%20%C3%A1cida%20causan%20enfermedades%20respiratorias.%20Adem%C3%A1s%2C%20la%20lluvia%20%C3%A1cida%20afecta%20la%20%0A%25%20vegetaci%C3%B3n%20y%20puede%20provocar%20enfermedades%20de%20la%20piel.%0A%25%0A%25%20Para%20mitigar%20estos%20problemas%2C%20existen%20varias%20soluciones%20posibles.%20El%20tratamiento%20del%0A%25%20agua%20es%20esencial%20para%20combatir%20la%20contaminaci%C3%B3n%20por%20pesticidas%20y%20desechos%20industriales.%0A%25%20El%20reciclaje%20es%20una%20soluci%C3%B3n%20efectiva%20para%20la%20contaminaci%C3%B3n%20por%20pl%C3%A1stico.%20La%20regulaci%C3%B3n%0A%25%20industrial%20es%20necesaria%20para%20controlar%20los%20desechos%20industriales.%20Las%20energ%C3%ADas%20%0A%25%20renovables%20pueden%20reducir%20las%20emisiones%20de%20CO2.%20El%20uso%20de%20bicicletas%20ayuda%20a%20disminuir%0A%25%20el%20smog%2C%20y%20la%20regulaci%C3%B3n%20de%20emisiones%20es%20crucial%20para%20combatir%20la%20lluvia%20%C3%A1cida.%0A%0A%0A%25%20Hechos%20sobre%20contaminaci%C3%B3n%20del%20agua%20y%20del%20aire%0A%0Acontamina(pesticidas%2C%20agua).%0Acontamina(pesticidas%2C%20aire).%0Acontamina(plastico%2C%20agua).%0Acontamina(desechos_industriales%2C%20agua).%0Acontamina(emisiones_co2%2Caire).%0Acontamina(smog%2Caire).%0Acontamina(lluvia_acida%2C%20aire).%0A%0A%25%20Hechos%20sobre%20los%20efectos%20de%20la%20contaminaci%C3%B3n%0Aefecto(pesticidas%2C%20enfermedades_respiratorias).%0Aefecto(pesticidas%2C%20ecosistemas_acuaticos).%0Aefecto(plastico%2C%20ecosistemas_acuaticos).%0Aefecto(desechos_industriales%2C%20ecosistemas_acuaticos).%0Aefecto(desechos_industriales%2C%20enfermedades_respiratorias).%0Aefecto(emisiones_co2%2C%20calentamiento_global).%0Aefecto(smog%2C%20enfermedades_respiratorias).%0Aefecto(lluvia_acida%2C%20vegetacion).%0Aefecto(lluvia_acida%2C%20enfermedades_respiratorias).%0Aefecto(lluvia_acida%2C%20enfermedades_piel).%0A%0A%25Reglas%20sobre%20soluciones%20posibles.%0Asolucion(tratamiento_agua)%3A-%20contamina(pesticidas%2C%20agua).%0Asolucion(tratamiento_agua)%3A-%20contamina(desechos_industriales%2C%20agua).%0Asolucion(reciclaje)%3A-contamina(plastico%2C%20agua).%0Asolucion(regulacion_industrial)%3A-contamina(desechos_industriales%2C%20agua).%0Asolucion(energias_renovables)%3A-contamina(emisiones_co2%2Caire).%0Asolucion(uso_bicicletas)%3A-contamina(smog%2Caire).%0Asolucion(regulacion_emisiones)%3A-contamina(lluvia_acida%2C%20aire).%0A%0A%0A


Design View

Resulting Artefact

Figure 5: Designing a Web app for classifying instruments.

Similarly, a primary school music teacher, Juan Matías Fernández, who teaches at Escuela
Primaria 125 “Rosalía Núñez de Alcaraz” in Neuquén, Patagonia, Argentina, design a class
for his students who are 8 or 9 years old. He presents a classification for instruments: string,
percussion and wind (the block-based logic program can be accessed in this link and the textual
logic program is available in this link to Ciao Prolog Playground). Figure 5 shows the Design
View and the Resulting Artefact created.

Prolog Web App Creator was designed to easily create a personalised Web application using
a Prolog code as input, by inserting graphical pieces on a canvas. This allows children and
young students to quickly build prototypes for their ideas, test them, and make improvements.
Furthermore, the created public entity can be shared with their family and friends.

5. Conclusions and Future Work

In this work, we propose Prolog Web App Creator, an integrated environment that enables
users to create their own Web applications for querying an input logic program using specified
widgets and related functionality. It allows the created Web application to be exported to a final
view (referred to as the Resulting Artefact), which can be shared via a link and access it with a
Web browser. Prolog Web App Creator facilitates the practice of basic LP and Prolog concepts
while encouraging creativity that results in a meaningful and personalised final product for the

https://drive.google.com/file/d/1jifur4ae1Y8d1v8QJjFXiAb7C-1jCBC3/view?usp=sharing
https://ciao-lang.org/playground/?code=%25%25%25%20Programa%20para%20clasificar%20a%20los%20instrumentos%20para%20ni%C3%B1os%20de%204to%20grado%0A%25%25%25%20Autor%3A%20Juan%20Mat%C3%ADas%20Fern%C3%A1ndez.%20%0A%25%25%25%20Profesor%20de%20M%C3%BAsica%20en%20la%20Escuela%20Primaria%20125%20%60%60Rosal%C3%ADa%20N%C3%BA%C3%B1ez%20de%20Alcaraz''%20%0A%25%25%25%20Neuqu%C3%A9n%2C%20Patagonia%2C%20Argentina%0A%0A%0Aelemento(guitarra%2C%20cuerdas).%0Aelemento(violin%2C%20cuerdas).%0Aelemento(arpa%2C%20cuerdas).%0Aelemento(piano%2C%20cuerdas).%0Aelemento(violonchelo%2C%20cuerdas).%0Aelemento(flauta%2C%20viento).%0Aelemento(acordeon%2C%20viento).%0Aelemento(trompeta%2C%20viento).%0Aelemento(corno%2C%20viento).%0Aelemento(trombon%2C%20viento).%0Aelemento(armonica%2C%20viento).%0Aelemento(siku%2C%20viento).%0Aelemento(saxofon%2C%20viento).%0Aelemento(tuba%2C%20viento).%0Aelemento(organo_tubos%2C%20viento).%0Aelemento(maracas%2C%20percusion).%0Aelemento(platillos%2C%20percusion).%0Aelemento(congas%2C%20percusion).%0Aelemento(pandereta%2C%20percusion).%0Aelemento(triangulo%2C%20percusion).%0Aelemento(tambor%2C%20percusion).%0Aelemento(bateria%2C%20percusion).


user.
The alpha version of the Prolog Web App Creator is available at https://prologforkids.fi.

uncoma.edu.ar/.
Overall, the proposed solution implements a visual and Web-based educational resource, to

use as a new technological environment to consolidate LP while increasing participation. The
path taken by environments, such as Scratch, provides consistent evidence that these types of
tools play an important role in empowering people, democratising CS and improving learning.
Within this framework, it is expected that Prolog Web App Creator has ample opportunities to
contribute to expanding the presence of LP in primary and secondary education.

Based on this work, the following lines for further research and development are proposed:

• Expand aspects related to creativity and customisation in the design process of the
Resulting Artefact.

• Translate the tool into other languages, increasing its target audience.
• Incorporate several examples of pre-designed Prolog applications, as supporting guides

or as starting points, to illustrate the various functionalities of the tool.
• Extend the tool to support block-based Prolog programs, in order to avoid contact with

textual syntax.

References

[1] S. Combéfis, G. Beresnevičius, V. Dagienė, Learning programming through games and
contests: overview, characterisation and discussion, Olympiads in Informatics 10 (2016)
39–60.

[2] J. Moreno-León, M. Román-González, G. Robles, On computational thinking as a universal
skill: A review of the latest research on this ability, in: 2018 IEEE Global Engineering
Education Conference (EDUCON), 2018, pp. 1684–1689. doi:10.1109/EDUCON.2018.
8363437.

[3] S. Bocconi, A. Chioccariello, P. Kampylis, V. Dagienė, P. Wastiau, K. Engelhardt, J. Earp,
M. A. Horvath, E. Jasutė, C. Malagoli, et al., Reviewing Computational Thinking in Com-
pulsory Education, Technical Report, Joint Research Centre (Seville site), 2022.

[4] R. Society, After the reboot: Computing education in uk schools, Policy Report (2017).
[5] P. Kampylis, V. Dagienė, S. Bocconi, A. Chioccariello, K. Engelhardt, G. Stupurienė, V. Ma-

siulionytė-Dagienė, E. Jasutė, C. Malagoli, M. Horvath, et al., Integrating computational
thinking into primary and lower secondary education, Educational Technology & Society
26 (2023) 99–117.

[6] S. Beux, D. Briola, A. Corradi, G. Delzanno, A. Ferrando, F. Frassetto, G. Guerrini, V. Mas-
cardi, M. Oreggia, F. Pozzi, et al., Computational thinking for beginners: A successful
experience using prolog., in: CILC, 2015, pp. 31–45.

[7] V. Tabakova-Komsalova, S. Stoyanov, A. Stoyanova-Doycheva, L. Doukovska, Prolog educa-
tion in selected high schools in bulgaria, in: D. S. Warren, V. Dahl, T. Eiter, M. Hermenegildo,
R. Kowalski, F. Rossi (Eds.), Prolog - The Next 50 Years, number 13900 in LNCS, Springer,
2023.

https://prologforkids.fi.uncoma.edu.ar/
https://prologforkids.fi.uncoma.edu.ar/
http://dx.doi.org/10.1109/EDUCON.2018.8363437
http://dx.doi.org/10.1109/EDUCON.2018.8363437


[8] Y. Zhang, J. Wang, F. Bolduc, W. G. Murray, LP based integration of computing and science
education in middle schools, in: Proceedings of the ACM Conference on Global Computing
Education, 2019, pp. 44–50.

[9] T. T. Yuen, M. Reyes, Y. Zhang, Introducing computer science to high school students
through logic programming, Theory and Practice of Logic Programming 19 (2019) 204–228.

[10] L. A. Cecchi, J. P. Rodríguez, V. Dahl, Logic programming at elementary school: Why,
what and how should we teach logic programming to children?, in: D. S. Warren, V. Dahl,
T. Eiter, M. Hermenegildo, R. Kowalski, F. Rossi (Eds.), Prolog - The Next 50 Years, number
13900 in LNCS, Springer, 2023.

[11] J. Rodriguez, L. Cecchi, Logic programming in primary school: Facing computer science at
an early age, Proceedings of 50 Conferencia Latinoamericana de Informática (CLEI) (2024).

[12] S. C. Pokress, J. J. D. Veiga, Mit app inventor: Enabling personal mobile computing, arXiv
preprint arXiv:1310.2830 (2013).

[13] J. Maloney, M. Resnick, N. Rusk, B. Silverman, E. Eastmond, The scratch programming
language and environment, ACM Transactions on Computing Education (TOCE) 10 (2010)
1–15.

[14] B. U. of California, Snap!, https://snap.berkeley.edu/about, ???? Accessed: April 04, 2024.
[15] G. García Pradales, Monaco playground for ciao prolog, 2022. URL: https://oa.upm.es/

71073/, trabajo Final de Grado.
[16] J. Rodríguez, M. M. Cortez, S. Boari, Exploration of the place of computer science knowledge

areas in the argentine secondary school: A systematic review, Electronic Journal of SADIO
21 (2022).

[17] I. E. Harel, S. E. Papert, Constructionism., Ablex Publishing, 1991.
[18] S. Papert, I. Harel, Situating constructionism, constructionism 36 (1991) 1–11.
[19] S. Sentance, J. Waite, M. Kallia, Teaching computer programming with primm: a sociocul-

tural perspective, Computer Science Education 29 (2019) 136–176.

https://snap.berkeley.edu/about
https://oa.upm.es/71073/
https://oa.upm.es/71073/

	1 Introduction and Motivation
	2 Related Works
	3 How Prolog Web App Creator works
	4 Prolog Web App Creator in Primary and Secondary School
	5 Conclusions and Future Work

