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Abstract
A controlled natural language (CNL) is a simplified version of a natural language designed to be more
precise and unambiguous. Only specific terms are allowed, reducing lexical ambiguity. The arrangement
of words is strictly defined to ensure clarity. A model is normally developed to represent those particular
aspects of a language and to embody a controlled form of the language for specific purposes. Language
models come in many forms. In this paper, we use formulas, organized as logic programs, to describe
relationships between objects. Large Language Models (LLMs) are also models. They fit into the category
of mathematical models. Before the advent of deep learning and LLMs, language modeling was primarily
based on statistical methods. Grammars can be considered models of languages, too. Combining the
strengths of grammar and LLMs can significantly enhance language generation and understanding. The
literature review was conducted with the assistance of the Gemini language model, which helped identify
key studies and relevant information.
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1. Introduction: Controlled Natural Language (CNL)

A controlled natural language (CNL) is a simplified version of a natural language designed to be
more precise and unambiguous. It achieves this by restricting the grammar, vocabulary, and
syntax of the language. CNLs can be used to represent complex information in a human-readable
format.

Many examples of CNLs have been proposed [12], including:

• Attempto Controlled English [7]: Used for knowledge representation and natural
language interfaces.

• Aviation English: A simplified version of English used in the aviation industry.

• Basic English: A simplified form of English with a limited vocabulary.

• Logical English [10]: Syntactic sugar for logic programs.

• InsurLE [5]: A refined form of Logical English to write contracts for the Insurance
Industry.
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1.1. Challenges of CNLs

While CNLs offer many advantages, they also present challenges: The restrictions imposed on
CNLs can limit their ability to express complex ideas. Developing effective natural language
processing tools for CNLs can be challenging. How to improve the ability of humans to generate
sentences of a CNL. Writing in a CNL can be harder than reading in CNL.

To address those challenges, researchers appeal to modelling techniques to focus on particular
aspects of a natural language in order to produce a CNL. A model is normally developed to
represent those particular aspects of a language and to embody a controlled form of the language
for specific purposes. To understand the many ways in which models can help to control a
natural language, we also explore the concepts of language models and grammars.

2. What is a Model?

A model is a simplified representation of something. It helps understand, analyze, or predict
the behavior of a system or object without dealing with full complexity. Models come in many
forms:

• Physical models: These are tangible representations, like a miniature car or a globe.

• Conceptual models: These are abstract representations, like a diagram or a flowchart.

• Mathematical models: These use equations and formulas to describe relationships between
variables. Language models and grammars are normally classified under this category.

• Computer models: These are simulated environments created using software.

Models are expected to have some epistemological properties: Models must explain and predict
the behaviour of a system, even if partially. Predictability seems harder to achieve, as the model
must replicate correctly the dynamics of the real system. However, explainability has become a
more appreciate property as the model becomes a learning device for humans, explaining why
the system behaves the way it does or should behave.

3. Large Language Models are models

Large Language Models (LLMs) are indeed models. They fit into the category of mathematical
models. They can be seen as complex systems of equations (neural networks) designed to
represent and predict language patterns under certain conditions:

• They are simplified representations: LLMs don’t capture the full complexity of human
language, but they implicitly model key aspects like grammar, semantics, and context.

• They are used for prediction: Given a prompt, an LLM predicts the most likely continuation
of the text.

• They are based on data: LLMs are trained on massive amounts of text data to learn
language patterns.



At some point we used to believe that LLMs were not models, because they are a black box,
unaccountable from a symbolic point of view. We changed our opinion after considering that
LLMs do represent the grammatical rules of a language, even if they do so in a representation
that is not symbolically meaningful. What counts here is that the LLM can actually predict
the syntax of expressions in natural language. Thus, with LLMs, predictability takes over from
explainability, an unusual turn of events.

While LLMs might not be physical or conceptual models in the traditional sense, they are
mathematical models that have proven very effective at parsing and generating human language.
LLMs are stochastic functions because they randomly select their actual output from a given
list of candidates. That creates the illusion of different possible outputs for the same input.
However, as with any other discrete machine, random selection can only be approximated by
some chaotic functions, which are actually deterministic and can be replicated. LLMs essentially
learn to predict the next word in a sequence. This might seem simple, but it is the foundation
for their capabilities.

(Answer Generated by AI tool Gemini begins) The general process involves:

1. Data Ingestion: LLMs are trained on vast amounts of text data. This could be
books, articles, code, or any form of written text.

2. Tokenization: The text is broken down into smaller units called tokens. These
can be words, subwords, or characters.

3. Embedding: Each token is converted into a numerical representation called an
embedding. This representation captures the semantic and syntactic meaning
of the token.

4. Neural Network Architecture: The model uses a complex neural network
architecture, often based on the Transformer model. This architecture allows
the model to process information sequentially and capture dependencies
between words.

5. Training: The model learns to predict the next token in a sequence given
the previous tokens. This process is repeated millions of times, refining the
model’s ability to parse and generate text.

The key elements for the operation of an LLM are: 1) the attention mechanism,
which allows the model to focus on different parts of the input sequence when
making predictions; 2) the Transformer Architecture and possibly 3) Transfer
Learning: by which the LLM can be fine-tuned on specific tasks, such as translation
or summarization, after initial training on a massive dataset.

(Answer Generated by AI tool Gemini ends)

4. Traditional Language Modeling

Before the advent of deep learning and LLMs, language modeling was primarily based on
statistical methods. Statistical Language Models relied on analyzing large corpora of text to



identify patterns and probabilities of word sequences [3]; [19]; [4]; [17]; [14]; [16]; [8]; [15];
[2] and have been widely applied to bioinformatics, by treating DNA sequences as words of a
language [13]. The most advanced include N-gram models which consider sequences of N words
(n-grams) and calculate the probability of the next word given the previous N words. While
simple, they were effective for basic tasks like speech recognition and machine translation.
Another important development in stochastic language models are the Hidden Markov Models
(HMMs). HMM models assume that the underlying state of the language is hidden, and they
use probabilistic techniques to infer these states. HMMs have been widely used in speech
recognition.

While these methods laid the groundwork for language modeling, they faced a number of
limitations. Data sparsity, limited context and lack of generalization became apparent as the
complexity of language tasks increased. Deep learning and LLMs, based on neural networks with
newer architectures like Transformers [22]; [18]; [20]; [1], overcome some of these limitations,
but not all and introduced theirs own. Thus, the combination of the different types of models
became an obvious target of new attempts to produce better models.

5. Grammars as Models of Languages

A grammar is a set of rules that define the structure of a language. In essence, it is a formal
system that attempts to capture the regularities and patterns found in natural language. Many
grammatical theories, like context-free grammars or dependency grammars, are formal models
that use mathematical or symbolic representations to describe language structure. Grammars
aim to generate all and only the well-formed sentences of a language. In this sense, they act as
a generative model, even when there is no stochastic process underneath as in the LLMs. Other
grammars are primarily descriptive, aiming to accurately represent the structure of a language
as it is used, but they still function as models of that language. And grammars can be used to
justify the structuring of sentences, by referring to the rules and the types of the components
involved.

Despite those promises, it is important to note that grammars often simplify the complexity
of a natural language, focusing on core syntactic patterns. No grammar can perfectly capture
all aspects of a natural language, which is constantly evolving and exhibiting variation.

To ground this analysis, however, it is worth comparing, with a simple example, a grammar
with an LLM.

5.1. Grammar vs. LLM: A Simple Example

5.1.1. Grammar (Rule-Based)

Consider a simple grammar for generating basic English sentences:

(Answer Generated by AI tool Gemini begins)

Sentence -> NounPhrase VerbPhrase
NounPhrase -> Determiner Noun
VerbPhrase -> Verb



Determiner -> "the" | "a"
Noun -> "cat" | "dog"
Verb -> "sleeps" | "barks"

This grammar can generate sentences like: "The cat sleeps" and "A dog barks".
However, this grammar is very limited and cannot generate complex sentences or
handle real-world language nuances.

(Answer Generated by AI tool Gemini ends)

5.1.2. LLM (Data-Driven)

(Answer Generated by AI tool Gemini begins)

An LLM, on the other hand, would learn from vast amounts of text data. It would
identify patterns and relationships between words without explicit rules. For
example, given a prompt with "The cat...", an LLM might generate:

• "The cat sleeps peacefully."

• "The cat chased the mouse."

• "The cat is on the mat."

(Answer Generated by AI tool Gemini ends)

5.2. Key Differences between a grammar and an LLM

A grammar is normally a rule-based, limited model with vocabulary and structure. It can be
queried top-down: given an expression as a goal to validate, or bottom-up: given sub-expressions
to be combined into a valid sentence of the language. The LLM, on the other hand is data-driven.
It works bottom-up, learns patterns from vast amounts of text and can generate more diverse
and complex text.

6. Combining Grammars and LLMs: A partial taxonomy of
approaches

(Answer Generated by AI tool Gemini begins)

Combining the strengths of grammar and LLMs can significantly enhance language
generation and understanding. Here are some potential approaches:

1. Grammar-Guided LLM Generation:

• Constraint-based generation: Use a grammar to define the structural
constraints of the output. The LLM then generates text within these
constraints. This can improve the grammatical correctness and coherence
of the generated text.



• Grammar-informed decoding: Incorporate grammatical knowledge into
the decoding process of the LLM. This can be achieved by assigning higher
probabilities to grammatically correct sequences. Which means that the
decoding process produces candidates that are tested for correctness by
the grammar.

2. LLM-Enhanced Grammar Induction:

• Grammar extraction: Use LLMs to extract grammatical patterns from
large amounts of text data. This can help in automatically constructing
or refining grammars.

• Grammar evaluation: LLMs can be used to evaluate the quality of gener-
ated text based on a given grammar. This can help in grammar refinement.

3. Hybrid Models:

• Grammar-augmented neural networks: Combine neural networks with
formal grammar components. This approach can leverage the strengths
of both models.

• Sequence-to-sequence models with grammar injection: Incorporate gram-
matical information into the input sequence of a sequence-to-sequence
model.

(Answer Generated by AI tool Gemini ends)

7. Preparing for a comprehensive, hybrid approach: a logic
programming grammar for a domain specific controlled
natural language

Consider the following expression for an insurance contract (variables in bold, operators in
red):

we will cover
any amount which you are legally liable to pay
in respect of
a damage which is a
1 bodily injury or
2 personal injury or
3 property damage or
4 nuisance or
5 trespass
if the damage occurs during the period of insurance
and the damage occurs in connection with the business.



7.1. Grammar of InsurLE

We are enriching a CNL, InsurLE [5], with respect to the original syntax of LE [10], [11] to
recognize expressions such as the one above. The most important improvements in InsurLE
with respect to LE are the enhanced conclusions which embed restrictive relative clauses and
other conditions in themselves. We call them large literals in the grammar (here simplified as a
Definite Clause Grammar, DCG):

large_literal_ � we will cover, description_.
large_literal_ � we will not cover, description_.

A description will eventually be any of those complex statements in the conclusions of the
rules in the insurance contract. For the time being, we are parsing these:

description_ � costsDescriptions, template_minus(is), lossDescription.
description_ � costsDescriptions, template_minus(is), claimDescription.
description_ � costsDescriptions.

A description can be some costs (at least one) followed by some built-in template (where the
word "is" has been removed) followed by a loss or a claim, such as: “a cost in respect of a loss”.
But a description can also be a description of a cost alone, like: “a cost which you are legally
liable to pay”.

The process would be as follows:

1. A potential insuree would ask (after inputting some extra expressions describing her/his
hypothetical case): What will you pay in this case?

2. The LLM adapts the question to the existing grammar and context, paraphrasing it into a
query: “we will cover which cost”

3. InsurLE parses the contract and the paraphrased input above. This is the translation into
Prolog of the rule above:

w e _ w i l l _ c o v e r (A) : −
i s _ a (A , amount ) ,
y o u _ a r e _ l e g a l l y _ l i a b l e _ t o _ p a y (A) ,
i s _ a ( B , damage ) ,
i s _ i n _ r e s p e c t _ o f (A , B ) ,
( i s _ a ( B , b o d i l y _ i n j u r y )
; i s _ a ( B , p e r s o n a l _ i n j u r y )
; i s _ a ( B , proper ty_damage )
; i s _ a ( B , n u i s a n c e )
; i s _ a ( B , t r e s p a s s )
) ,
o c c u r s _ d u r i n g _ t h e _ p e r i o d _ o f _ i n s u r a n c e ( B ) ,
o c c u r s _ i n _ c o n n n e c t i o n _ w i t h _ t h e _ b u s i n e s s ( B ) .



Figure 1: answer query "we will cover which cost"

4. The Prolog engine produces this answer:

To test the feasibility of this approach, we prompted Google’s LLM, Gemini (1.5), with a set
of instructions to list the most common ways to ask the same question:

andrew has affiliated with company at 2020-01-02.

that corresponds to the template

*an entity* has affiliated with *an affiliate* at *a date*

and then map the corresponding alternatives as new entries to the Prolog dictionary used by
Logical English. Gemini produced the following list of variants of the query:

(Answer Generated by AI tool Gemini begins)

• who affiliated with which entity at which date.

• what entity affiliated with which company at which date.

• when did which entity affiliate with which other entity.

• on what date did which entity affiliate with which company.

• is there an affiliation between which entity and which company.

• when did the affiliation between which entity and which company begin.

(Answer Generated by AI tool Gemini ends)

The Logical English parser has been updated accordingly and the example above can be
verified 1 and tested2 online, to demonstrate that an LLM could take queries from users and
map them to relations in a LE document. Notice that we don’t even need to guaranteed that the
LLM produces a query that is recognized by the CNL. In those cases, the system could reply
that it does not understand the question.

In these examples, the LLM is used only to paraphrase the inputs from users into expressions
understandable by the CNL. This may seems like a misuse of the LLM, but it exploits its parsing
capabilities and leaves the reasoning to the Logical engine, avoiding hallucinations altogether.

1https://github.com/LogicalContracts/LogicalEnglish/tree/main/kb/4_affiliates_3.pl
2https://le.logicalcontracts.com/p/4_affiliates_3.pl

https://github.com/LogicalContracts/LogicalEnglish/tree/main/kb/4_affiliates_3.pl
https://le.logicalcontracts.com/p/4_affiliates_3.pl


8. Relevance of CNL, LLM, and Prolog to Education

Artificial Intelligence, AI, challenges every aspect and element of human behaviour. As a
consequence, every aspect and element of what has been traditionally considered as intelligent
behaviour is being considered as a target for automation, even when there is evidence of its
inherent complexity and difficulty. Teaching is no exception to that. Many expect humans to
be replaced by robots (or mobile apps) at teaching, as an obvious step towards democratizing
and leveraging access to knowledge for everybody with, no so obvious, savings in preparation,
deploying and maintenance of teachers.

However, Teaching is a complex element of human behaviour in that it normally involves
more that one person. Somebody is trying to convey a meaningful message to others and these
others are trying to learn from what it is being displayed or, more commonly (and cheap), said.
Language, natural language, is at the heart of teaching as much as it is at the core of any other
collective, human enterprise.

The connections between Language and Logic are multi-dimensional and probably impossible
to reduce. However, we can connect them using a device originally thought as a connection
between computing and logic. The expression (Kowalski, 1979) :

Algorithm = Logic + Control

has been proposed to explain the relations between those concepts, in the context of algorithms
been considered as recipes to control computer devices. We could consider an automatic teacher
(robot or mobile app) as one of those algorithms, a CNL, which simulates a human teacher.
Grammars rules would represent the logic of the language. Other similar connections are
envisage:

CNL = Logic + Control = Grammar rules + Control
LLM = Logic’ ∪ Control’

Eventually, assuming that LLMs are very good representations (in practical terms) of Grammar
rules:

CNL = LLM + Control

On each expression, the terms Logic and Control may entail different objects. In the case of
LLMs, Logic’ is expressed at the sub-symbolic level and therefore, it requires Control’: a different,
very entangled form of control (i.e. not a linear combination, which is why we use ∪).

All of the above is relevant in cases where the purpose is to develop an automatic assistance
for teaching. There are, however, many other ways in which LLMs and traditional AI software
can be integrated for teaching purposes. We recommend [21], for a comprehensive review of
those possibilities. Here, let us mention a few project that are being developed in the interception
of CNL, Prolog and LLMs:

• Develop a CNL for a specific domain (e.g., insurance contracts, law) and implement a
Prolog system to process CNL statements [5].

• Create a natural language interface for a Prolog-based system [11].



• Build an LLM-based system to extract knowledge from text and populate a Prolog knowl-
edge base [21].

• Develop a Prolog-based chatbot that can generate human-like text using an LLM [21].

By incorporating these elements into a curriculum, educators can provide students with a
comprehensive understanding of language, logic, and their applications in the real world. For a
more in depth analysis of the connections between Prolog, natural language processing and
Logic and their fundamental role in the future of science, we recommend [6].

To know that LLMs, CNLs and grammars are all restricted models of a special system: a
human language, could be useful for teachers to participate in those discussions about automatic
tutors that, allegedly, aim to replace humans.

9. Conclusion

We have argued that a Controlled Natural Language, CNL, exists as long as there is a model for
it. Models come in many forms but, in the case of CNL, models normally take the form of a
mathematical function or logical representation with rules describing the relationships between
its components. An LLM is also a model if one considers the associate neural network as a
mathematical function. Being both based on some mathematical semantics, one would expect
hybrid models that integrate them to be feasible. We have explained how to do integrate an
LLM in the preprocessing of an input from an user so that it can be matched against relations
in a CNL with a knowledge base controlled by an external Prolog engine. LLMs are very good
parsers and theses capabilities could be well exploited while avoiding hallucinations. We look
forward to developing and testing some of those models in particular applications domains
where idiosyncrasies cause differential uses of natural languages, like in the insurance industries.
Ethical considerations, in particular, would benefit from being able to intervening the interaction
between humans and LLMs and verifying the truth conditions of any statement offered by the
computer as an answer to a human user.
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